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Enhancing the availability and reliability of dielectric ceramic energy storage devices is of great importance. In this work, (1–x)
Na0.5Bi0.5TiO3–xBi(Mg0.5Hf0.5)O3 (NBT–xBMH) lead-free ceramics were created utilizing a solid-state reaction technique. All 
NBT–xBMH ceramics have a single perovskite structure. With increasing BMH doping, the grain size shrinks drastically, which 
greatly enhances the breakdown electric field (310 kV/cm at x = 0.25). Additionally, the relaxation behaviors of NBT–xBMH 
ceramics with high BMH content are more remarkable. Among all designed components, the NBT–0.25BMH ceramic exhibits 
the best energy storage performance with a high Wrec of 4.63 J/cm3 and an η of 75.1% at 310 kV/cm. The NBT–0.25BMH ceramic 
has exceptional resistance to fluctuations in both frequency (5–500 Hz) and temperature (30–100°C). Charge–discharge test shows 
that the NBT–0.25BMH ceramic has a quick discharge rate (t0.9 < 110 ns). With these properties, the NBT–0.25BMH ceramic may 
have applications in microdevices as well as in ultra-high power electronic systems.
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1. � Introduction

Recently, the popularity of pulse power technology and the 
increasing demand for miniaturized devices have led to an 
increasing requirement for capacitors with large energy stor-
age capacities.1–3 Dielectric energy storage capacitors with 
a large power density and a short charge–discharge cycle 
meet the demands of ultra-high power electronic systems.4–6 
Compared with most dielectric energy storage materials, 
dielectric ceramics have the merits of higher dielectric con-
stant, lower dielectric loss, moderate breakdown electric 
field, better temperature stability, and good fatigue resis-
tance.7–10 Thus, dielectric energy storage ceramic materials 
have a broad application prospect in heat-resistant dielectric 
pulse systems. Nevertheless, the poor energy storage density 
hinders their practical applicability.1,7 Therefore, it is neces-
sary to deeply study and optimize the energy storage capacity 
and reliability of dielectric ceramics.

The total energy density (W), recoverable energy density 
(Wrec), energy loss density (Wloss), and energy storage effi-
ciency (η) of dielectric ceramics can be determined based on 
their polarization–electric field (P–E) loops. The correspond-
ing mathematical equations are given as follows11,12:
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where Pmax, Pr, and E stand for maximum polarization, rem-
nant polarization, and electric field, respectively. According 
to Eqs. (1)–(4), a dielectric ceramic material with high Wrec 
is considered to have both high Pmax, high breakdown electric 
field strength (BDS), and low Pr.13

Bi-based ferroelectric ceramic materials possess great 
saturation polarization strength because Bi3+ has a simi-
lar electronic configuration to Pb2+.7Na0.5Bi0.5TiO3(NBT)- 
ceramic hasa high Pmax and dielectric constantandis environ-
mentally friendly, which are potential advantages as energy 
storage applications. However, NBT ceramic has significant 
disadvantages, such as poor sintering density, weak break-
down electric field strength, many types of defects resulting 
from the easy volatility of Na+ and Bi3+,14 and large resid-
ual polarization intensity, which makes poor energy storage 
performance. Although pure NBT ceramic does not perform 
well in energy storage, many studies have identified that the 
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capacity and reliability of energy storage can be strengthened 
by the construction of multiple systems, doping with ionic, 
optimization of sintering processes, etc.15–17 Some scholars 
have studied introducing other ferroelectrics with a perovskite 
structure (e.g., BaTiO3(BT), SrTiO3) into NBT ceramic to 
form a binary solid solution as a matrix and then doping it 
with a Bi(M1M2)O3 type composite solid solution.18,19 This 
strategy effectively reduces the Pr and coercive field strength 
while maintaining high BDS and Pmax, resulting in excel-
lent energy storage properties. Lin et al. achieved a Wrec of 
3.45 J/cm3 and an η of 88.01% in 0.85(0.7NBT–0.3SrTiO3)–
0.15Bi(Mg2/3Nb1/3)O3 ceramic through a strategy of intro-
ducing the lone pair electron 6s2 configuration of Bi3+ and 
refining grain.18 Guo et al. introduced Bi(Mg2/3Nb1/3)O3 into 
0.94NBT–0.06BaTiO3 to produce a Wrec of 6.3 J/cm3 with 
the design of constructing polymorphic polar nano-regions 
(PNRs) coexistence by phase structure control.20 The BDS 
was greatly improved (reaching 522 kV/cm) by introducing 
Bi(Mg0.5Zr0.5)O3 into (Na0.5Bi0.5)0.65Sr0.35TiO3 binary solid 
solution, and a Wrec of 8.46 J/cm3 was achieved by Zhu et al.21

There are a few reports on introducing the Bi(M1M2)
O3 type composite solid solutions into pure NBT ceramic 
to enhance its energy storage capabilities. In some studies, 
Hf4+ and Mg2+ were doped into the B-site of ceramics with 
the perovskite structure, which greatly improved the energy 
storage properties of the ceramics.18–23 Therefore, these two 
elements are selected to be doped into the B-site of NBT 
ceramics. The Bi(Mg0.5Hf0.5)O3 (BMH) was introduced into 
the NBT ceramic to form NBT–xBMH (x = 0.00, 0.10, 0.15, 
0.20, 0.25, and 0.30) ceramics. The energy storage capacity, 
reliability, dielectric characteristics, and microstructure of 
NBT–xBMH ceramics were investigated in detail.

2. � Material and Methods

The NBT–xBMH ceramics were produced utilizing a solid- 
state reaction technique. HfO2 (99.99%), TiO2 (99%), Bi2O3 
(99.99%), MgO (99.9%), and Na2CO3 (99.8%) were used 
after being dried at 75°C for 18 h. The reagents were weighed 
based on the stoichiometric ratios in experimental protocols, 
and then the mixed reagents were ball milled at 350 rpm for 
24 h. Afterward, the dried powder was calcined for 3 h at 
850°C and then ground and dried under the same conditions. 
Next, the powder was added with polyvinyl butyral which 
promotes granulation, and then placed in a mold and pressed 
into ceramic discs at 6 MPa. Finally, all the ceramic samples 
were obtained by sintering the ceramic discs at 1160°C in an 
air atmosphere for 2 h.

X-ray diffraction (XRD) patterns of the NBT–xBMH 
ceramics with polished and ultrasonically cleaned sur-
faces were measured using an X-ray diffractometer (D8 
ADVANCE, Bruker, Germany). Dielectric properties of the 
ceramics sintered with silver electrodes were tested by an 
LCR meter (E4980A, Keysight). Microscopic morpholo-
gies of ultrasonically cleaned and gold-plated NBT–xBMH 

ceramics were investigated by scanning electron microscopy 
(SEM, LYRA 3 XMU, Tescan, Czech Republic). The Radiant 
Precision Premier (Albuquerque, NM, America) and tem-
perature-controlled stage were used to analyze the P–E loops 
of NBT–xBMH ceramics polished to 120 μm and plated 
with gold electrodes. In a self-made RLC circuit, charge– 
discharge behaviors of the NBT–0.25BMH ceramic polished 
to 120 μm and sintered with silver electrodes were tested.

3. � Results and Discussion

The XRD images of NBT–xBMH ceramics are illustrated 
in Fig. 1(a). Obviously, a single perovskite structure is pres-
ent in all ceramics, which implies that NBT and BMH form 
solid solutions.18 In addition, these images are consistent 
with similar existing reports.22,24 The pseudo-cubic structures 
of the NBT–xBMH ceramics are demonstrated by the non 
splitting of the diffraction peaks.18 From Fig. 1(b), the (110) 
peak slightly moves to a lower angle as the amount of BMH-
doped increases, which indicates that the cell volume is grad-
ually expanding.13,19 This is attributed to the replacement of  
Ti4+ (0.605 Å) by the larger ions (Mg2+ (0.72 Å) and Hf4+ 
(0.71 Å)).

The sintering process makes the relative density and 
strength of the ceramic samples larger.25,26 Figure 2 displays 
the SEM pictures of the surfaces of the NBT–xBMH ceram-
ics. Dense microstructures were observed in all NBT–xBMH 
ceramics, and the introduction of BMH resulted in a dramatic 
decrease in grain size. These facilitate the improvement of 
BDS according to previous studies.27,28 To further analyze the 
influence of BMH doping on grain size, statistical analysis 
of grain size was performed using Nano Measurer software, 
as seen in the illustrations of Fig. 2. With increasing BMH 
doping, the grain size decreases sharply at first, then contin-
ues to decrease slowly when x ≤ 0.25, and then increases at 
x = 0.30. Reasons for grain refinement are given below: (1) 
Doping with Bi3+ inhibits the volatility of Bi3+ and Na+ during 

(a) (b)

Fig. 1.  (a) The XRD images of NBT–xBMH ceramics. (b) Mag-
nified (110) peaks.
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sintering, thus, reducing the formation of oxygen vacancies, 
which facilitates the suppression of grains growth.29 (2) The 
larger ions replace Ti4+, increasing the lattice strain energy 
and obstructing grain boundary motion, which results in 
grainrefinement.30 The reason for the slightly larger grain size 
at x = 0.30 is that doping with too many ions causes the cre-
ation of new vacancies which may cause the grains to grow.21

Figure 3 shows the temperature versus dielectric proper-
ties in NBT–xBMH ceramics. BMH-doped ceramic samples 

are relaxor ferroelectrics, as shown by the frequency depen-
dence of their dielectric loss and dielectric constant.21 Besides, 
all the ceramics exhibit significant high-temperature dielec-
tric relaxation above 340°C.31 The temperature which 
corresponds to the dielectric anomaly broad peak is the 
Curie temperature (Tm). Detailed values of the Tm and dielec-
tric constant peak (εm) are provided in Table 1. As increas-
ing BMH doping, Tm increases first and then decreases, 
and εm decreases significantly. Besides, the dielectric peaks 

Fig. 2.  SEM pictures of NBT–xBMH ceramics. The illustrations provide grain size statistics.

Fig. 3.  Dielectric properties of NBT−xBMH ceramics from 5 kHz to 50 kHz.

2350008.indd   32350008.indd   3 06/10/23   7:53:40 AM06/10/23   7:53:40 AM



K. Wang et al.� J. Adv. Dielect. 13, 2350008 (2023)

2350008-4

FA	 WSPC/270-JAD  2350008  ISSN: 2010-135X

gradually become blurred, forming dielectric plateaus near 
Tm. As a consequence, the NBT–xBMH ceramics with higher 
BMH content exhibit smaller dielectric constant changes near 
Tm, which contributes to the energy storage capability of the 
ceramics being stable over large temperature variations.22,32 
The values of dielectric loss of the ceramics are always 
nearly zero below 340°C, which facilitates the enhancement 
of BDS.19 Dielectric loss increases suddenly after 340°C, 
which is caused by the temperature increase which results 
in an increase in the space charge or conductivity of the fer-
roelectric ceramic.33 To further evaluate the relaxation phe-
nomenon of the ceramics, the diffusion parameters (γ) were 
calculated based on the modified Curie–Weiss formula.13,34 
Figure B1 (Supporting Information) illustrates typical fitting 
graphs, and the γ values are presented in Table 1. Apparently, 
the γ value of the ceramic increases with the increasing BMH 
content and gradually approaches 2, indicating that the intro-
duction of BMH is beneficial to enhance the relaxation char-
acteristic of pure NBT ceramic.31 Multiple cations at A-sites 
and B-sites are the primary reason for the enhanced relax-
ation effect of the ceramics.35

The P–E loops of NBT–xBMH ceramics are displayed in 
Fig. 4. Obviously, pure NBT ceramic has a high Pr and weak 

BDS, resulting in poor energy storage performance. The grad-
ual thinning of the P–E loops indicates a shift in NBT–xBMH 
ceramics from standard ferroelectric type to relaxation type 
with increasing BMH doping.57 To more intuitively observe 
the effect of BMH introduction on the P–E loops, Fig. 5(a) 
provides the P–E loops under the same electric field. The Pr 
and Pmax decrease significantly with increasing BMH doping. 
In particular, the Pr decreases almost to zero, which is benefi-
cial for improving energy storage efficiency. The main factor 
leading to reduced ferroelectric properties and smaller Pr is 
usually considered to be the PNRs caused by the addition of 
BMH. The introduction of Mg2+ and Hf4+ with different ionic 
radii and valences disrupts the long-range ordering of the 
B-site of NBT ceramic, which increases the local structural 
disorder of NBT ceramic samples, destroys the ferroelectric 
macrodomains and promotes the formation of PNRs.20,21,58,59

Figure 5(b) displays the η and Wrec of the NBT–xBMH 
ceramics under the critical electric field. Obviously, with 
increasing BMH doping, the BDS increases when x ≤ 0.25 
and then decreases. Related studies have demonstrated that 
the BDS is intimately associated with the grain size, which 
can be formulated as E GBDS 1/∝  where G represents grain 
size.60–62 Combined with the previous analysis of grain size, 
the correlation between BDS and grain size of NBT–xBMH 
ceramics is in accordance with the above equation. From 
Fig. 5(b), NBT–0.25BMH ceramic obtained the best energy 
storage capabilities. The NBT–0.25BMH ceramic achieved 
a high Wrec of 4.63 J/cm3 and an η of 75.1% at 310 kV/cm, 
which is a great improvement compared to the NBT ceramic 
(Wrec = 1.24 J/cm3, η = 33.1%). Thus, significant improve-
ments in energy storage capabilities were achieved by intro-
ducing the BMH into NBT ceramics. Figure 5(c) shows the 
comparison of the energy storage properties of some NBT-
based, BT-based, K0.5Na0.5NbO3 (KNN)-based, and NaNbO3 

Table 1.  Dielectric parameters of BNT−xBMH ceramics at 50 kHz.

Composition Tm (°C) εm γ

NBT 336 1888 1.76

NBT-0.10BMH 368 1444 1.83

NBT-0.15BMH 352 1253 1.87

NBT-0.20BMH 340 982 1.89

NBT-0.25BMH 320 737 1.91

NBT-0.30BMH 288 636 1.97

Fig. 4.  P–E loops of NBT–xBMH ceramics in electric fields less than and equal to the critical electric field.
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(NN)-based ceramics with the NBT–0.25BMH ceramic. The 
NBT–0.25BMH ceramic has good overall properties com-
pared to the other ceramics, which indicates that the optimi-
zation strategy in this work is very effective in improving the 
energy storage performance of NBT ceramic.

Energy storage materials often work in complex environ-
ments, so investigating the frequency stability and thermosta-
bility of the NBT–0.25BMH ceramic is of great importance. 
The P–E loops of the NBT–0.25BMH ceramic at different 
frequencies (5–500 Hz) are presented in Fig. 6(a). The loops 
only have a small variation in the frequency range. As depicted 
in Fig. 6(b), the Wrec varies from 1.80 J/cm3 to 1.98 J/cm3 

and the η varies from 80.2% to 87.9%, corresponding to a 
variation of 9.7% and 9.6%, respectively. The performance 
of energy storage changes little with changes of frequency, 
so the NBT–0.25BMH ceramic has good frequency stability. 
Figures 6(c) and 6(d) show the P–E loops at various tempera-
tures (30–100°C) and the corresponding calculated η and Wrec 
of the NBT–0.25BMH ceramic, respectively. The loops are 
very slim, and the η and Wrec fluctuate mildly around 85.4% 
and 1.91 J/cm3, respectively. Their corresponding variation 
rates are only 1.6% and 2.3%, respectively. Thus, the NBT–
0.25BMH ceramic possesses favorable thermal stability 
against changes in the external environment.

Fig. 5.  (a) Unipolar P–E loops of NBT–xBMH ceramics at 150 kV/cm and 10 Hz. (b) η and Wrec of NBT–xBMH ceramics under critical 
electric field. (c) Comparison of energy storage properties of NBT–0.25BMH ceramic with other lead-free ceramics.13,17,22,36–56

Fig. 6.  (a) and (c) are the variations of P–E loops at different frequencies (5–500 Hz) and temperatures (30–100°C) of the NBT–0.25BMH 
ceramic, respectively. (b) and (d) are Wrec, η, and Wloss calculated from (a) and (c), respectively.
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The pulse charge–discharge test measures the perfor-
mance of ceramic capacitors in actual use, and the test 
results are more informative than the results of Wrec in prac-
tical applications. Figure 7(a) displays current waveforms 
of underdamped discharge for the NBT–0.25BMH ceramic. 
The current waveforms only need 500 ns to complete sev-
eral oscillations. The first current peak (Imax) increases from 
4.12 A to 12.29 A with rising voltage, as seen in the illustra-
tion of Fig. 7(a). The current density (CD) and power den-
sity (PD) of NBT–0.25BMH ceramic gradually increase with 
increasing voltage, reaching 391.4 A/cm2 and 39.1 MW/cm3, 
respectively.

The current waveforms of over damped discharge for the 
NBT–0.25BMH ceramic are depicted in Fig. 7(c). Obviously, 
the waveform peaks occur in less than 50 ns, and the dis-
charge process is finished in about 500 ns. The illustration 
in Fig. 7(c) displays that the Imax value grows from 1.48 A 
to 4.64 A. Discharge energy density (Wdis) is estimated by 
Eq. (5).63

	 W R i t dt Vdis
2 ( ) /= ∫ , 	 (5)

where R is the load resistance (205 Ω) and V is the volume 
of the NBT–0.25BMH ceramic. The variation of Wdis with 
time is presented in Fig. 7(d). Notably, the actual energy dis-
charged by the NBT–0.25BMH ceramic under 200 kV/cm 
electric field (Wdis = 2.09 J/cm3) is smaller than the energy 

calculated from Eq. (3) (Wrec = 2.28 J/cm3). This may be 
caused by the differences in the characterization mechanisms 
for the static P–E hysteresis test which was performed at a 
frequency of 10 Hz (corresponding to 0.1 s) in this study, and 
the dynamic charge–discharge test which was performed on 
a time scale close to microseconds or sub-microseconds.64 
In the charge–discharge test, the energy was not completely 
released because the ferroelectric domains could not be con-
verted in time due to the fast discharge speed.65 Besides, the 
equivalent series resistance in the circuit also consumed part 
of the energy.2 Generally, t0.9 refers to the time taken for Wdis 
to reach 90% of its maximum.66 The t0.9 of NBT–0.25BMH 
ceramic is always small (less than 110 ns) under the differ-
ent electric fields. In summary, the NBT–0.25BMH ceramic 
shows excellent discharge capability which facilitates its 
application in pulsed power devices.

4. � Conclusions

The NBT–xBMH ceramics were successfully created, and the 
detailed mechanisms related to the dielectric properties and 
energy storage performance were analyzed. With increasing 
BMH doping, the size of the grains dropped sharply, and the 
relaxation performance was enhanced. Furthermore, the Pr 
of the ceramic samples with high doping content decreased 
sharply, and the BDS was greatly improved. Thus, the NBT–
0.25BMH ceramic obtained good energy storage performance 

Fig. 7.  (a) and (c) are underdamped discharge current waveforms and overdamped discharge current waveforms of the NBT–0.25BMH 
ceramic, respectively. (b) Variations of PD and CD with the electric field for the NBT–0.25BMH ceramic. (d) The calculated Wdis changes 
with time.
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(Wrec = 4.63 J/cm3, η = 75.1%). In addition, the ceramic 
exhibited outstanding thermostability, good frequency stabil-
ity, and a very quick discharge rate. These properties make 
NBT–0.25BMH ceramic potential for applications in energy 
storage devices.
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